Preprints:
Order Matters: 3D Shape Generation from Sequential VR Sketches, Yizi Chen, Sidi Wu, Tianyi Xiao, Nina Wiedemann, Loic Landrieu [arxiv] [gihub] [project]
EZ-SP: Fast and Lightweight Superpoint-Based 3D Segmentation, Louis Geist, Loic Landrieu, Damien Robert. [arxiv] [project]
FORMSpoT: A Decade of Tree-Level, Country-Scale Forest Monitoringm Martin Schwartz, Fajwel Fogel, Nikola Besic, Damien Robert, Louis Geist, Jean-Pierre Renaud, Jean-Matthieu Monnet, Clemens Mosig, Cédric Vega, Alexandre d’Aspremont, Loic Landrieu, Philippe Ciais, [arxiv] [data soon!]
Published Articles:
Adapting Vision Transformers to Ultra-High Resolution Semantic Segmentation with Relay Tokens, Yohann Perron, Vladyslav Sydorov, Christophe Pottier, Loic Landrieu. TMLR 2025 [arxiv soon!]
Segmenting France Across Four Centuries, Marta López-Rauhut, Hongyu Zhou, Mathieu Aubry, Loic Landrieu. ICDAR 2025 [arxiv] [data] [github]
AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities, Guillaume Astruc, Nicolas Gonthier, Clement Mallet, Loic Landrieu. CVPR 2025 (highlight ✨)
[arXiv], [project], [models],
Open-Canopy: Towards Very High Resolution Forest Monitoring, Fajwel Fogel, Yohann Perron, Nikola Besic, Laurent Saint-André, Agnès Pellissier-Tanon1, Martin Schwartz, Thomas Boudras, Ibrahim Fayad, Alexandre d’Aspremont, Loic Landrieu, Phillipe Ciais. CVPR 2025 (highlight ✨) [arXiv], [github and data]
Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation, Nicolas Dufour, David Picard, Vicky Kalogeiton, Loic Landrieu. CVPR 2025 [arXiv], [demo], [project], [models]
CoDEx: Combining Domain Expertise for Spatial Generalization in Satellite Image Analysis. Abhishek Kuriyal, Elliot Vincent, Mathieu Aubry, and Loic Landrieu. CVPR 2025 Workshop EarthVision [arXiv], [project]
A survey and benchmark of automatic surface reconstruction from point clouds, Raphael Sulzer, Renaud Marlet, Bruno Vallet, Loic Landrieu TPAMI 2024 [arXiv]
Archaeoscape: Bringing Aerial Laser Scanning Archaeology to the Deep Learning Era, Yohann Perron,Vladyslav Sydorov, Adam P. Wijker, Damian Evans, Christophe Pottier, Loic Landrieu
NeurIPS Benchmark & Dataset (splotlight ✨) 2024. [arXiv], [github and data]
OmniSat: Self-Supervised Modality Fusion for Earth Observation, Guillaume Astruc, Nicolas Gonthier, Clement Mallet, Loic Landrieu ECCV 2024. [arXiv]
Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans, Romain Loiseau, Eliott Vincent, Mathieu Aubry, Loic Landrieu, CVPR 2024. [github] [arXiv] [project] [data]
OpenStreetView-5M: The Many Roads to Global Visual Geolocation, Guillaume Astruc, Nicolas Dufour, Ioannis Siglidis, Constantin Aronssohn, Nacim Bouia, Stephanie Fu, Romain Loiseau, Van Nguyen Nguyen, Charles Raude, Elliot Vincent, Lintao XU, Hongyu Zhou, Loic Landrieu, CVPR 2024. [demo] [paper] [data] [project]
StegoGAN: Leveraging Steganography for Non-Bijective Image-to-Image Translation, Sidi Wu, Yizi Chen, Samuel Mermet, Lorenz Hurni, Nicolas Gonthier, Konrad Schindler, Loic Landrieu, CVPR 2024.
[github] [arXiv] [data]
Scalable 3D Panoptic Segmentation with Superpoint Graph Clustering, Damien Robert, Hugo Raguet, Loic Landrieu, 3DV 2024 (oral 🎤). [github] [arXiv]
FLAIR : A Country-Scale Land Cover Semantic Segmentation Dataset From Multi-Source Optical Imagery, Anatol Garioud, Nicolas Gonthier, Loic Landrieu, Apolline De Wit, Marion Valette, Marc Poupée, Sébastien Giordano, Boris Wattrelos, NeurIPS Dataset and Benchmark 2023. [challenge] [github] [arXiv]
Efficient 3D Semantic Segmentation with Superpoint Transformer, Damien Robert, Hugo Raguet, Loic Landrieu, ICCV 2023. [project] [arXiv] [github]
A Model You Can Hear: Audio Identification with Playable Prototypes, Romain Loiseau, Baptiste Bouvier, Yann Teytaut, Elliot Vincent, Mathieu Aubry, Loic Landrieu, ISMIR 2022. [project] [arXiv] [github]
Structured Learning of Geospatial Data, Loic Landrieu, HDR dissertation [hal]
Online Segmentation of LiDAR Sequences: Dataset and Algorithm, Romain Loiseau, Mathieu Aubry, Loic Landrieu, ECCV 2022 [arXiv] [github] [data] [project]
Predicting Vegetation Stratum Occupancy from Airborne LiDAR Data with Deep Learning, Ekaterina Kalinicheva, Loic Landrieu, Clement Mallet and Nesrine Chehata, Journal of Applied Earth Observation and Geoinformation 2022 [arXiv] [github]
Helix4D: Online Semantic Segmentation of LiDAR Sequences, Romain Loiseau, Mathieu Aubry, Loic Landrieu, CVPR Workshop on Transformers for Vision (oral 🎤) 2022
A Model You Can Hear: Audio Classification with Playable Prototypes, Romain Loiseau , Baptiste Bouvier, Yann Teytaut , Elliot Vincent, Mathieu Aubry, Loic Landrieu, CVPR Workshop Sight and Sound (oral 🎤) 2022
Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans, Ekaterina Kalinicheva, Loic Landrieu, Clement Mallet, Nesrine Chehata, CVPR Workshop EarthVision (oral 🎤) 2022 [arXiv] [github]
Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation, Damien Robert, Bruno Vallet, Loic Landrieu, CVPR (oral 🎤, best paper finalist 🏅) 2022 [arXiv] [github]
Deep Surface Reconstruction from Point Clouds with Visibility Information, Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Marlet, Bruno Vallet ICPR 2022 [arXiv] [github]
Multi-Modal Temporal Attention Models for Crop Mapping from Satellite Time Series, Vivien Sainte Fare Garnot, Loic Landrieu, Nesrine Chehata, IJPRS 2022 [arXiv] [data]
Leveraging Class Hierarchies with Metric-Guided Prototype Learning, Vivien Sainte Fare Garnot, Loic Landrieu, BMVC 2021 [arXiv] [github]
Representing Shape Collections with Alignment-Aware Linear Models, Romain Loiseau, Tom Monnier, Mathieu Aubry, Loic Landrieu, 3DV 2021 [arXiv] [project] [github]
Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks, Vivien Sainte Fare Garnot, Loic Landrieu, ICCV 2021 [arXiv] [github] [data]
Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series, Félix Quinton, Loic Landrieu, Remote Sensing 2021 [arXiv] [github]
Vegetation Stratum Occupancy Prediction from Airborne LiDAR 3D Point Clouds, Ekaterina Kalinicheva, Loic Landrieu, Clement Mallet and Nesrine Chehata, SilviLaser 2021 [arXiv] [github]
Scalable Surface Reconstruction with Delaunay-Graph Neural Networks, Raphael Sulzer, Loic Landrieu, Renaud Marlet, and Bruno Vallet, Eurographics SGP 2021 [arXiv] [github]
Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds, Thomas Chaton, Nicolas Chaulet, Sofiane Horache, Loic Landrieu, 3DV (oral 🎤) 2020 [arXiv] [github]
Improved Crop Classification with Rotation Knowledge using Sentinel-1 and-2 Time Series, Sébastien Giordano, Simon Bailly, Loic Landrieu, Nesrine Chehata, Photogrammetric Engineering & Remote Sensing 2020 [arXiv]
Lightweight Temporal Self-Attention for Classifying Satellite Image Time Series, Vivien Sainte Fare Garnot, Loic Landrieu, AALTD@ECML+KDD 2020 [arXiv] [github]
Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention, Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano, Nesrine Chehata, CVPR (oral 🎤) 2020. [arXiv] [github]
Parallel Cut Pursuit For Minimization of the Graph Total Variation, Hugo Raguet, Loic Landrieu, ICML-W Graph Reasoning Workshop 2019. [arXiv] [gitlab]
Supervized Segmentation with Graph-Structured Deep Metric Learning, Loic Landrieu, Mohamed Boussaha, ICML-W Graph Reasoning Workshop 2019. [arXiv] [github]
Time-Space Tradeoff in Deep Learning Models for Crop Classification on Satellite Multi-Spectral Image Time Series, Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano, Nesrine Chehata, IGARSS 2019. [arXiv]
Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning, Loic Landrieu, Mohamed Boussaha, CVPR 2019. [arXiv] [github]
Piecewise-Planar Approximation Of Large 3d Data As Graph-structured Optimization, ISPRS GeoSpatial Week 2019, Stéphane Guinard, Loic Landrieu, Laurent Caraffa, Bruno Vallet. [link]
Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with Graph Total Variation, Hugo Raguet and Loic Landrieu, ICML 2018 [arXiv] [github]
* Segmentation Sémantique à Grande Échelle par Graphes de Superpoints, Loic landrieu and Martin Simonovsky, RFIAP 2018.
Temporal Structured Classification Using Sentinel Image Time Series for Crop Type Mapping, Simon Bailly, Sébastien Giordano, Loic Landrieu, and Nesrine Chehata, IGARSS 2018.
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs, Loic landrieu and Martin Simonovsky, CVPR 2018. [arXiv] [github]
A Structured Regularization Framework for Spatially Smoothing Semantic Labelings of 3D Point Clouds. Loic Landrieu, Hugo Raguet , Bruno Vallet , Clément Mallet, Martin Weinmann, ISPRS Journal of Photogrammetry and Remote Sensing 2017 [hal] [isprs] [github]
Comparison of Belief Propagation and Graph-Cut Approaches for Contextual Classification of 3D LiDAR Point Cloud Data. Loic Landrieu, Clément Mallet, Martin Weinmann, IGARSS 2017. [hal]
Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions on General Weighted Graphs. Loic Landrieu, Guillaume Obozinski, SIAM Journal on Imaging Science (SIIMS) 2017, [siam] [hal] [github]
* Pré-segmentation pour la Classification Faiblement Supervisée de Scènes Urbaines à partir de Nuages de Points 3D LiDAR. Stéphane Guinard, Loic Landrieu. ORASIS, Jun 2017. [hal]
Weakly Supervised Segmentation-Aided Classification of Urban Scenes from 3D LiDAR Point Clouds. Stéphane Guinard, Loic Landrieu. ISPRS Archive, 2017. [hal]
Learning Structured Models on Weighted Graphs, with Application to Spatial Data Analysis. Loic landrieu, PhD Thesis, 2016 [hal] [github]
Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions on Weighted Graphs. Loic Landrieu, Guillaume Obozinski, AISTAT 2016. [hal] [github]
Preconditioning of a Generalized Forward-Backward Splitting and Application to Optimization on Graphs. Hugo Raguet, Loic Landrieu, SIAM Journal on Imaging Science (SIIMS), 2015. [siam] [arxiv]
Continuously Indexed Potts Models on Unoriented Graphs. Loic Landrieu, Guillaume Obozinsk, UAI 2014 – Quebec, Canada, [uai] [hal]
Articles with a * are French translations of work previously published in English.